Case Report: MALT1 Mutation in A Patient with Severe Combined Immunodeficiency

Document Type : Case Report

Authors

1 Department of Microbiology and Virology, Faculty of medicine, Zanjan University of Medical Sciences, Zanjan, Iran

2 Department of Molecular Genetics, Faculty of Basic Sciences and Advanced Technologies in biology, University of Science and Culture, Tehran, Iran

3 Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute

4 Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran

10.22034/igj.2020.245559.1047

Abstract

Severe combined immunodeficiency (SCID) is one of the most serious and life-threatening forms of primary immunodeficiency disorders (PID). SCID patients manifest a large clinically heterogeneous group of monogenic disorders caused by a defect in human innate and adaptive immune response. It leads to an increased susceptibility to variety of infections, sometimes with fetal outcome. To date, more than 30 candidate genes and mutations in patients with SCID phenotype have been identified. We found a homozygous variation (c.1454 A>G_ p. Asn485Ser) in the MALT1 identified by WES in an expired infant with SCID. The mutation in MALT1 is associated with absence of T cell activation, which produces immature lymphocytes leading to SCID.

Keywords


1. Bousfiha A, Jeddane L, Picard C, Ailal F, Gaspar HB, Al-Herz W, et al. The 2017 IUIS phenotypic classification for primary immunodeficiencies. J. Clin. Immunol. 2018;38(1):129-43. 2. Lipstein EA, Vorono S, Browning MF, Green NS, Kemper AR, Knapp AA, et al. Systematic evidence review of newborn screening and treatment of severe combined immunodeficiency. Pediatrics. 2010;125(5):e1226-e35. 3. Routes J, Verbsky J. Newborn screening for severe combined immunodeficiency. CURR ALLERGY ASTHM R. 2018;18(6):34. 4. Van Der Spek J, Groenwold RH, Van Der Burg M, van Montfrans JM. TREC based newborn screening for severe combined immunodeficiency disease: a systematic review. J. Clin. Immunol. 2015;35(4):416-30. 5. Kumrah R, Vignesh P, Patra P, Singh A, Anjani G, Saini P, et al. Genetics of severe combined immunodeficiency. Genes Dis. 2020;7(1):52-61. 6. Aluri J, Desai M, Gupta M, Dalvi A, Terance A, Rosenzweig SD, et al. Clinical, immunological, and molecular findings in 57 patients with severe combined immunodeficiency (SCID) from India. Front. Immunol. 2019;10:23. 7. Tasher D, Dalal I. The genetic basis of severe combined immunodeficiency and its variants. Appl. Clin. Genet. 2012;5:67. 8. Lionakis MS, Netea MG, Holland SM. Mendelian genetics of human susceptibility to fungal infection. Cold Spring Harb Perspect Med. 2014;4(6):a019638. 9. Baker MW, Grossman WJ, Laessig RH, Hoffman GL, Brokopp CD, Kurtycz DF, et al. Development of a routine newborn screening protocol for severe combined immunodeficiency. J. Allergy Clin. Immunol. 2009;124(3):522-7. 10. Amatuni GS, Currier RJ, Church JA, Bishop T, Grimbacher E, Nguyen AA-C, et al. Newborn screening for severe combined immunodeficiency and T-cell lymphopenia in California, 2010–2017. Pediatrics. 2019;143(2). 11. Lucas PC, McAllister-Lucas LM, Nuñez G. NF-κB signaling in lymphocytes: a new cast of characters. J. Cell Sci. 2004;117(1):31-9. 12. Lee CH, Bae SJ, Kim M. Mucosa-associated lymphoid tissue lymphoma translocation 1 as a novel therapeutic target for rheumatoid arthritis. Sci. Rep. 2017;7(1):1-11.13. Lee Y-H, Huang J-H, Chang T-H, Yang H-C, Wu-Hsieh BA. Mucosa-associated lymphoid tissue lymphoma translocation protein 1 positively modulates matrix metalloproteinase-9 production in alveolar macrophages upon Tolllike receptor 7 signaling and influenza virus infection. Front. Immunol. 2017;8:1177. 14. Juilland M, Thome M. Holding all the CARDs: how MALT1 controls CARMA/CARD-dependent signaling. Front. Immunol. 2018;9:1927. 15. Frizinsky S, Rechavi E, Barel O, Najeeb RH, Greenberger S, Lee YN, et al. Novel MALT1 mutation linked to immunodeficiency, immune dysregulation, and an abnormal T cell receptor repertoire. J. Clin. Immunol. 2019;39(4):401-13. 16. Staal J, Bekaert T, Beyaert R. Regulation of NF-κB signaling by caspases and MALT1 paracaspase. Cell Res. 2011;21(1):40-54. 17. de Diego RP, Sánchez-Ramón S, LópezCollazo E, Martínez-Barricarte R, Cubillos-Zapata C, Cerdán AF, et al. Genetic errors of the human CARD-BCL10-MALT1 (CBM) complex: molecular, immunological, and clinical heterogeneity. Allergy Clin. Immunol. 2015;136(5):1139. 18. Caamaño J, Hunter CA. NF-κB family of transcription factors: central regulators of innate and adaptive immune functions. Clin. Microbiol. Rev. 2002;15(3):414-29. 19. Braun DA, Schueler M, Halbritter J, Gee HY, Porath JD, Lawson JA, et al. Whole exome sequencing identifies causative mutations in the majority of consanguineous or familial cases with childhood-onset increased renal echogenicity. Kidney Int. 2016;89(2):468-75. 20. Al-Herz W, Bousfiha A, Casanova J-L, Chatila T, Conley ME, Cunningham-Rundles C, et al. Corrigendum: Primary immunodeficiency diseases: An update on the classification from the International Union of Immunological Societies Expert Committee for primary immunodeficiency. Front Immunol. 2014;5:460. 21. Casanova J-L, Abel L. Primary immunodeficiencies: a field in its infancy. Science. 2007;317(5838):617-9. 22. Casanova J-L, Abel L. The genetic theory of infectious diseases: a brief history and selected illustrations. Annu Rev Genom Hum G. 2013;14:215-43. 23. Buckley RH. Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu Rev Immunol. 2004;22:625-55. 24. Notarangelo LD. Functional T cell immunodeficiencies (with T cells present). Annu. Rev. Immunol. 2013;31:195-225. 25. Lanternier F, Pathan S, Vincent QB, Liu L, Cypowyj S, Prando C, et al. Deep dermatophytosis and inherited CARD9 deficiency. N. Engl. J. Med. 2013;369(18):1704-14. 26. Stepensky P, Keller B, Buchta M, Kienzler A-K, Elpeleg O, Somech R, et al. Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects. J. Allergy Clin. Immunol. 2013;131(2):477-85. e1. 27. Jabara HH, Ohsumi T, Chou J, Massaad MJ, Benson H, Megarbane A, et al. A homozygous mucosa-associated lymphoid tissue 1 (MALT1) mutation in a family with combined immunodeficiency. J. Allergy Clin. Immunol. 2013;132(1):151-8. 28. McKinnon ML, Rozmus J, Fung S-Y, Hirschfeld AF, Del Bel KL, Thomas L, et al. Combined immunodeficiency associated with homozygous MALT1 mutations. J. Allergy Clin. Immunol. 2014;133(5):1458-62. e7. 29. Punwani D, Wang H, Chan AY, Cowan MJ, Mallott J, Sunderam U, et al. Combined immunodeficiency due to MALT1 mutations, treated by hematopoietic cell transplantation. J. Clin. Immunol. 2015;35(2):135-46. 30. Charbit-Henrion F, Jeverica AK, Bègue B, Markelj G, Parlato M, Avcin SL, et al. Deficiency in mucosa-associated lymphoid tissue lymphoma translocation 1: a novel causeof IPEX-like syndrome. J Pediatr Gastr Nutr. 2017;64(3):378-84. 31. Bornancin F, Renner F, Touil R, Sic H, Kolb Y, Touil-Allaoui I, et al. Deficiency of MALT1 paracaspase activity results in unbalanced regulatory and effector T and B cell responses leading to multiorgan inflammation. J. Immunol. 2015;194(8):3723-34. 32. Wiegmann H, Reunert J, Metze D, Marquardt T, Engel T, Kunde V, et al. Refining the dermatological spectrum in primary immunodeficiency: mucosa‐associated lymphoid tissue lymphoma translocation protein 1 deficiency mimicking Netherton/Omenn syndromes. Br. J. Dermatol. 2020;182(1):202-7. 33. Afonina IS, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Staal J, et al. The paracaspase MALT 1 mediates CARD 14‐induced signaling in keratinocytes. EMBO Rep. 2016;17(6):914-27. 34. Demeyer A, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Muyllaert D, et al. MALT1-deficient mice develop atopic-like dermatitis upon aging. FRONT IMMUNOL. 2019;10:2330. 35. Ma CA, Stinson JR, Zhang Y, Abbott JK, Weinreich MA, Hauk PJ, et al. Germline hypomorphic CARD11 mutations in severe atopic disease. Nat.Genet. 2017;49(8):1192. 36. Dadi H, Jones TA, Merico D, Sharfe N, Ovadia A, Schejter Y, et al. Combined immunodeficiency and atopy caused by a dominant negative mutation in caspase activation and recruitment domain family member 11 (CARD11). J. Allergy Clin. Immunol. 2018;141(5):1818-30. e2. 37. Dorjbal B, Stinson JR, Ma CA, Weinreich MA, Miraghazadeh B, Hartberger JM, et al. Hypomorphic caspase activation and recruitment domain 11 (CARD11) mutations associated with diverse immunologic phenotypes with or without atopic disease. J. Allergy Clin. Immunol. 2019;143(4):1482-95. 38. Glocker E-O, Hennigs A, Nabavi M, Schäffer AA, Woellner C, Salzer U, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med. 2009;361(18):1727-35. 39. Snow AL, Xiao W, Stinson JR, Lu W, Chaigne-Delalande B, Zheng L, et al. Congenital B cell lymphocytosis explained by novel germline CARD11 mutationsGermline CARD11 mutations in humans. J EXP MED. 2012;209(12):2247-61.