Why should TREC and KREC quantification assay be concerned to screen of newborns in developing countries?

Document Type: Review

Author

Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, FL, USA.

10.22034/igj.2019.212375.1027

Abstract

Primary immunodeficiencies contain a group of several different diseases. Giving the fact that their clinical outcome ranges from mild to potentially life-threatening,
detection of patients with these diseases in the neonatal period is the main goal of efforts is currently being made. It has been reported that T-cell receptor excision circles (TRECs) and kappa-deleting recombination excision circles (KRECs) are circular DNA segments produced in T and B cells during their maturation in the thymus and bone marrow, respectively. Fortunately, excision circles can be reliably quantified using real-time quantitative PCR techniques. The TREC and KREC assays, introduced in the newborn screening program (NBS), allow early disease identification and may lead to discovery of new genetic defects including Severe combined immunodeficiencies (SCID), primary agammaglobulinaemias (such as X-linked agammaglobulinaemia) and inherited haemophagocytic syndromes (such as familial haemophagocytic lymphohistiocytosis). In this regard, the cost-effectiveness, survival of children and successful in improving quality of life children involved in newborn screenings for severe combined immunodeficiencyand has been demonstrated.
Here we discuss about TREC and KREC assay, their applications and also assessment of the cost effective of establishment of a program for newborn screening based on TRECs and KRECs quantification in Iran.

Keywords


1. Hodes RJ, Sharrow SO, Solomon A. Failure of T cell receptor V beta negative selection in an athymic environment. Science. 1989;246(4933):1041-4. 2. Fry AM, Jones LA, Kruisbeek AM, Matis LA. Thymic requirement for clonal deletion during T cell development. Science. 1989;246(4933):1044-6. 3. Nossal GJ. Negative selection of lymphocytes. Cell. 1994;76(2):229-39. 4. Dik WA, Pike-Overzet K, Weerkamp F, de Ridder D, de Haas EF, Baert MR, et al. New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med. 2005;201(11):1715- 23. 5. Ghia P, ten Boekel E, Rolink AG, Melchers F. B-cell development: a comparison between mouse and man. Immunol Today. 1998;19(10):480-5.6. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302(5909):575-81. 7. Ye P, Kirschner DE. Measuring emigration of human thymocytes by T-cell receptor excision circles. Critical reviews in immunology. 2002;22(5-6):483-97. 8. Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF, et al. Changes in thymic function with age and during the treatment of HIV infection. Nature. 1998;396(6712):690-5. 9. van Zelm MC, Berkowska MA, van Dongen JJ. Studying the replication history of human B lymphocytes by real-time quantitative (RQ)-PCR. Methods Mol Biol. 2013;971:113-22. 10. Siminovitch KA, Bakhshi A, Goldman P, Korsmeyer SJ. A uniform deleting element mediates the loss of kappa genes in human B cells. Nature. 1985;316(6025):260-2. 11. Nakagawa N, Imai K, Kanegane H, Sato H, Yamada M, Kondoh K, et al. Quantification of kappa-deleting recombination excision circles in Guthrie cards for the identification of early B-cell maturation defects. The Journal of allergy and clinical immunology. 2011;128(1):223-5 e2. 12. Sodora DL, Douek DC, Silvestri G, Montgomery L, Rosenzweig M, Igarashi T, et al. Quantification of thymic function by measuring T cell receptor excision circles within peripheral blood and lymphoid tissues in monkeys. Eur J Immunol. 2000;30(4):1145-53. 13. Hazenberg MD, Verschuren MC, Hamann D, Miedema F, van Dongen JJ. T cell receptor excision circles as markers for recent thymic emigrants: basic aspects, technical approach, and guidelines for interpretation. Journal of molecular medicine. 2001;79(11):631-40. 14. Hazenberg MD, Otto SA, Cohen Stuart JW, Verschuren MC, Borleffs JC, Boucher CA, et al. Increased cell division but not thymic dysfunction rapidly affects the T-cell receptor excision circle content of the naive T cell population in HIV-1 infection. Nat Med. 2000;6(9):1036-42. 15. Verschuren MC, Wolvers-Tettero IL, Breit TM, Noordzij J, van Wering ER, van Dongen JJ. Preferential rearrangements of the T cell receptordelta-deleting elements in human T cells. J Immunol. 1997;158(3):1208-16. 16. van Zelm MC, Szczepanski T, van der Burg M, van Dongen JJ. Replication history of B lymphocytes reveals homeostatic proliferation and extensive antigen-induced B cell expansion. J Exp Med. 2007;204(3):645-55. 17. Serana F, Chiarini M, Zanotti C, Sottini A, Bertoli D, Bosio A, et al. Use of V(D)J recombination excision circles to identify T- and B-cell defects and to monitor the treatment in primary and acquired immunodeficiencies. Journal of translational medicine. 2013;11:119. 18. Zubakov D, Liu F, van Zelm MC, Vermeulen J, Oostra BA, van Duijn CM, et al. Estimating human age from T-cell DNA rearrangements. Current biology : CB. 2010;20(22):R970-1. 19. Zhang L, Lewin SR, Markowitz M, Lin HH, Skulsky E, Karanicolas R, et al. Measuring recent thymic emigrants in blood of normal and HIV-1- infected individuals before and after effective therapy. J Exp Med. 1999;190(5):725-32. 20. Hug A, Korporal M, Schroder I, Haas J, GlatzK, Storch-Hagenlocher B, et al. Thymic export function and T cell homeostasis in patients with relapsing remitting multiple sclerosis. J Immunol. 2003;171(1):432-7. 21. Nobile M, Correa R, Borghans JA, D'Agostino C, Schneider P, De Boer RJ, et al. De novo T-cell generation in patients at different ages and stages of HIV-1 disease. Blood. 2004;104(2):470-7. 22. Bains I, Thiebaut R, Yates AJ, Callard R. Quantifying thymic export: combining models of naive T cell proliferation and TCR excision circle dynamics gives an explicit measure of thymic output. J Immunol. 2009;183(7):4329-36. 23. Hazenberg MD, Otto SA, de Pauw ES, Roelofs H, Fibbe WE, Hamann D, et al. T-cell receptor excision circle and T-cell dynamics after allogeneic stem cell transplantation are related to clinical events. Blood. 2002;99(9):3449-53. 24. Ribeiro RM, Perelson AS. Determining thymic output quantitatively: using models to interpret experimental T-cell receptor excision circle (TREC) data. Immunological reviews. 2007;216:21-34. 25. Krenger W, Schmidlin H, Cavadini G, Hollander GA. On the relevance of TCR rearrangement circles as molecular markers for thymic output during experimental graft-versushost disease. J Immunol. 2004;172(12):7359-67. 26. Borte S, von Dobeln U, Fasth A, Wang N, Janzi M, Winiarski J, et al. Neonatal screening for severe primary immunodeficiency diseases using high-throughput triplex real-time PCR. Blood. 2012;119(11):2552-5. 27. Mensen A, Ochs C, Stroux A, Wittenbecher F, Szyska M, Imberti L, et al. Utilization of TREC and KREC quantification for the monitoring of early T- and B-cell neogenesis in adult patients after allogeneic hematopoietic stem cell transplantation. Journal of translational medicine. 2013;11:188. 28. Serana F, Sottini A, Chiarini M, Zanotti C, Ghidini C, Lanfranchi A, et al. The different extent of B and T cell immune reconstitution after hematopoietic stem cell transplantation and enzyme replacement therapies in SCID patients with adenosine deaminase deficiency. J Immunol. 2010;185(12):7713-22. 29. Sottini A, Ghidini C, Zanotti C, Chiarini M, Caimi L, Lanfranchi A, et al. Simultaneous quantification of recent thymic T-cell and bone marrow B-cell emigrants in patients with primary immunodeficiency undergone to stem cell transplantation. Clin Immunol. 2010;136(2):217- 27. 30. Serana F, Airo P, Chiarini M, Zanotti C, Scarsi M, Frassi M, et al. Thymic and bone marrow output in patients with common variable immunodeficiency. Journal of clinical immunology. 2011;31(4):540-9. 31. Douek DC, Vescio RA, Betts MR, Brenchley JM, Hill BJ, Zhang L, et al. Assessment of thymic output in adults after haematopoietic stem-cell transplantation and prediction of T-cell reconstitution. Lancet. 2000;355(9218):1875-81. 32. Thiel A, Alexander T, Schmidt CA, Przybylski GK, Kimmig S, Kohler S, et al.Direct assessment of thymic reactivation after autologous stem cell transplantation. Acta haematologica. 2008;119(1):22-7. 33. Borghans JA, Bredius RG, Hazenberg MD, Roelofs H, Jol-van der Zijde EC, Heidt J, et al. Early determinants of long-term T-cell reconstitution after hematopoietic stem cell transplantation for severe combined immunodeficiency. Blood. 2006;108(2):763-9. 34. Weinberg K, Blazar BR, Wagner JE, Agura E, Hill BJ, Smogorzewska M, et al. Factors affecting thymic function after allogeneic hematopoietic stem cell transplantation. Blood. 2001;97(5):1458-66. 35. Conley ME, Rohrer J, Minegishi Y. X-linked agammaglobulinemia. Clinical reviews in allergy & immunology. 2000;19(2):183-204. 36. Moratto D, Gulino AV, Fontana S, Mori L, Pirovano S, Soresina A, et al. Combined decrease of defined B and T cell subsets in a group of common variable immunodeficiency patients. Clin Immunol. 2006;121(2):203-14. 37. Guazzi V, Aiuti F, Mezzaroma I, Mazzetta F, Andolfi G, Mortellaro A, et al. Assessment of thymic output in common variable immunodeficiency patients by evaluation of T cell receptor excision circles. Clin Exp Immunol. 2002;129(2):346-53. 38. Warnatz K, Denz A, Drager R, Braun M, Groth C, Wolff-Vorbeck G, et al. Severe deficiency of switched memory B cells (CD27(+)IgM(-)IgD(-)) in subgroups of patients with common variable immunodeficiency: a new approach to classify a heterogeneous disease. Blood. 2002;99(5):1544-51. 39. Amariglio N, Lev A, Simon A, Rosenthal E, Spirer Z, Efrati O, et al. Molecular assessment of thymus capabilities in the evaluation of T-cell immunodeficiency. Pediatric research. 2010;67(2):211-6. 40. Kamae C, Nakagawa N, Sato H, Honma K, Mitsuiki N, Ohara O, et al. Common variable immunodeficiency classification by quantifying T-cell receptor and immunoglobulin kappadeleting recombination excision circles. The Journal of allergy and clinical immunology. 2013;131(5):1437-40 e5. 41. Baker MW, Grossman WJ, Laessig RH, Hoffman GL, Brokopp CD, Kurtycz DF, et al. Development of a routine newborn screening protocol for severe combined immunodeficiency. The Journal of allergy and clinical immunology. 2009;124(3):522-7. 42. Quiros-Roldan E, Serana F, Chiarini M, Zanotti C, Sottini A, Gotti D, et al. Effects of combined antiretroviral therapy on B- and T-cell release from production sites in long-term treated HIV-1+ patients. Journal of translational medicine. 2012;10:94. 43. Borte S, Wang N, Oskarsdottir S, von Dobeln U, Hammarstrom L. Newborn screening for primary immunodeficiencies: beyond SCID and XLA. Ann N Y Acad Sci. 2011;1246:118-30. 44. Meeths M, Chiang SC, Wood SM, Entesarian M, Schlums H, Bang B, et al. Familial hemophagocytic lymphohistiocytosis type 3 (FHL3)caused by deep intronic mutation and inversion in UNC13D. Blood. 2011;118(22):5783-93. 45. Puck JM. Neonatal screening for severe combined immune deficiency. Current opinion in allergy and clinical immunology. 2007;7(6):522-7. 46. Hale JE, Bonilla FA, Pai SY, GerstelThompson JL, Notarangelo LD, Eaton RB, et al. Identification of an infant with severe combined immunodeficiency by newborn screening. The Journal of allergy and clinical immunology. 2010;126(5):1073-4. 47. Gerstel-Thompson JL, Wilkey JF, Baptiste JC, Navas JS, Pai SY, Pass KA, et al. High-throughput multiplexed T-cell-receptor excision circle quantitative PCR assay with internal controls for detection of severe combined immunodeficiency in population-based newborn screening. Clinical chemistry. 2010;56(9):1466-74. 48. Comeau AM, Hale JE, Pai SY, Bonilla FA, Notarangelo LD, Pasternack MS, et al. Guidelines for implementation of population-based newborn screening for severe combined immunodeficiency. Journal of inherited metabolic disease. 2010;33(Suppl 2):S273-81. 49. Routes JM, Grossman WJ, Verbsky J, Laessig RH, Hoffman GL, Brokopp CD, et al. Statewide newborn screening for severe T-cell lymphopenia. JAMA. 2009;302(22):2465-70. 50. Chan K, Puck JM. Development of populationbased newborn screening for severe combined immunodeficiency. The Journal of allergy and clinical immunology. 2005;115(2):391-8. 51. Buckley RH. The long quest for neonatal screening for severe combined immunodeficiency. The Journal of allergy and clinical immunology. 2012;129(3):597-604; quiz 5-6. 52. Isaacs JD, Thiel A. Stem cell transplantation for autoimmune disorders. Immune reconstitution. Best practice & research Clinical haematology. 2004;17(2):345-58. 53. Kook H, Goldman F, Padley D, Giller R, Rumelhart S, Holida M, et al. Reconstruction of the immune system after unrelated or partially matched T-cell-depleted bone marrow transplantation in children: immunophenotypic analysis and factors affecting the speed of recovery. Blood. 1996;88(3):1089-97. 54. Wijnaendts L, Le Deist F, Griscelli C, Fischer A. Development of immunologic functions after bone marrow transplantation in 33 patients with severe combined immunodeficiency. Blood. 1989;74(6):2212-9. 55. Chavan S, Bennuri B, Kharbanda M, Chandrasekaran A, Bakshi S, Pahwa S. Evaluation of T cell receptor gene rearrangement excision circles after antiretroviral therapy in children infected with human immunodeficiency virus. J Infect Dis. 2001;183(10):1445-54. 56. Ometto L, De Forni D, Patiri F, Trouplin V, Mammano F, Giacomet V, et al. Immune reconstitution in HIV-1-infected children on antiretroviral therapy: role of thymic output and viral fitness. AIDS. 2002;16(6):839-49. 57. Bonilla FA, Geha RS. Common variable immunodeficiency. Pediatric research. 2009;65(5 Pt 2):13R-9R. 58. Resnick ES, Moshier EL, Godbold JH, Cunningham-Rundles C. Morbidity and mortalityin common variable immune deficiency over 4 decades. Blood. 2012;119(7):1650-7. 59. Ram G, Chinen J. Infections and immunodeficiency in Down syndrome. Clin Exp Immunol. 2011;164(1):9-16. 60. Lorenzi AR, Patterson AM, Pratt A, Jefferson M, Chapman CE, Ponchel F, et al. Determination of thymic function directly from peripheral blood: a validated modification to an established method. J Immunol Methods. 2008;339(2):185-94. 61. Baker MW, Laessig RH, Katcher ML, Routes JM, Grossman WJ, Verbsky J, et al. Implementing routine testing for severe combined immunodeficiency within Wisconsin's newborn screening program. Public health reports. 2010;125 Suppl 2:88-95. 62. Rezaei N, Aghamohammadi A, Moin M, Pourpak Z, Movahedi M, Gharagozlou M, et al. Frequency and clinical manifestations of patients with primary immunodeficiency disorders in Iran: update from the Iranian Primary Immunodeficiency Registry. Journal of clinical immunology. 2006;26(6):519-32. 63. Chan K, Davis J, Pai SY, Bonilla FA, Puck JM, Apkon M. A Markov model to analyze costeffectiveness of screening for severe combined immunodeficiency (SCID). Molecular genetics and metabolism. 2011;104(3):383-9. 64. McGhee SA, Stiehm ER, McCabe ER. Potential costs and benefits of newborn screening for severe combined immunodeficiency. J Pediatr. 2005;147(5):603-8.