Precision Medicine as Treatment for Primary Immunodeficiency and Immune Dysregulation

Document Type : Review


1 Department of Pediatric Infectious Diseases and Immunology, Pontificia Universidad Católica de Chile

2 Division of Immunology, Boston Children’s Hospital, Harvard Medical School



“Precision medicine” is the use of therapy that targets the molecular basis of a patient’s disease process. This approach is increasingly well-established in treatment of monogenic disorders of immunity, including primary immunodeficiencies and primary immune regulatory disorders. This is due to the exquisite detail with which many immune pathways have been defined, and the wide variety of immune modulatory medications that target these pathways. Here we review many of the most effective uses of this approach and suggest a framework for classifying these strategies.


1. Bruton OC. Agammaglobulinemia. Pediatrics 1952;9(6):722–8. 2. Shehata N, Palda V, Bowen T, et al. The Use of Immunoglobulin Therapy for Patients With Primary Immune Deficiency: An Evidence-Based Practice Guideline. Transfus Med Rev 2010;24(SUPPL. 1). 3. Perez EE, Orange JS, Bonilla F, et al. Update on the use of immunoglobulin in human disease:A review of evidence. J Allergy Clin Immunol 2017;139(3):S1–46. 4. Ballow M. Mechanisms of immune regulation by IVIG. Curr. Opin. Allergy Clin. Immunol. 2014;14(6):509–15. 5. ER, Anderson JE, Cohen F, Pollara B, Meuwissen HJ. Adenosine-Deaminase Deficinecy in Two Patients With Severely Impaired Cellular Immunity. Lancet 1972;300(7786):1067–9. 6. Zegers BJM, Stoop JW. Metabolic Causes of Immune Deficiency: Mechanisms and Treatment. In: Immunodeficiency and Disease. 1988. p. 113–31. 7. Hershfield MS, Buckley RH, Greenberg ML, et al. Treatment of Adenosine Deaminase Deficiency with Polyethylene Glycol–Modified Adenosine Deaminase. N Engl J Med 1987;316(10):589–96. 8. Hershfield MS. PEG‐ADA: An alternative to haploidentical bone marrow transplantation and an adjunct to gene therapy for adenosine deaminase deficiency. Hum. Mutat. 1995;5(2):107–12. 9. Gaspar HB, Aiuti A, Porta F, Candotti F, Hershfield MS, Notarangelo LD. How I treat ADA deficiency. Blood 2009;114:3524–32. 10. Gaspar HB, Cooray S, Gilmour KC, et al. Immunodeficiency: Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction. Sci Transl Med 2011;3(97). 11. Sharma A, Jacob A, Tandon M, Kumar D. Orphan drug: Development trends and strategies. J Pharm Bioallied Sci 2010;2(4):290. 12. Chambers CA, Krummel ME, Boitel B, et al. The Role of CTLA-4 in the Regulation and Initiation of T-Cell Responses. Immunol Rev 1996;153(1):27–46. 13. Lo B, Zhang K, Lu W, et al. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 2015;349(6246):436–40. 14. Schubert D, Bode C, Kenefeck R, et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med 2014;20(12):1410–6. 15. Kuehn O. Immune Dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 2014;4:6–11. 16. Lo B, Fritz JM, Su HC, Uzel G, Jordan MB, Lenardo MJ. CHAI and LATAIE: New genetic diseases of CTLA-4 checkpoint insufficiency. Blood 2016;128(8):1037–42. 17. Alangari A, Alsultan A, Adly N, et al. LPSresponsive beige-like anchor (LRBA) gene mutation in a family with inflammatory bowel disease and combined immunodeficiency. J Allergy Clin Immunol 2012;130(2):481–8. 18. Lopez-Herrera G, Tampella G, PanHammarström Q, et al. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am J Hum Genet 2012;90:986–1001. 19. Kiykim A, Ogulur I, Dursun E, et al. Abatacept as a Long-Term Targeted Therapy for LRBA Deficiency. J Allergy Clin Immunol Pract 2019; 20. Schwab C, Gabrysch A, Olbrich P, et al.Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4–insufficient subjects. J Allergy Clin Immunol 2018;142(6):1932–46. 21. Baehner RL, Nathan DG. Leukocyte oxidase: Defective activity in chronic granulomatous disease. Science 1967;155(3764):835–6. 22. Quie PG, White JG, Holmes B, Good RA. In vitro bactericidal capacity of human polymorphonuclear leukocytes: diminished activity in chronic granulomatous disease of childhood. J Clin Invest 1967;46(4):668–79. 23. Holland SM. Chronic Granulomatous Disease. Hematol Oncol Clin North Am 2013;27(1):89–99. 24. Thomsen IP, Smith MA, Holland SM, Creech CB. A Comprehensive Approach to the Management of Children and Adults with Chronic Granulomatous Disease. J Allergy Clin Immunol Pract 2016;4(6):1082–8. 25. Kuhns DB, Alvord WG, Heller T, et al. Residual NADPH Oxidase and Survival in Chronic Granulomatous Disease. N Engl J Med 2010;363(27):2600–10. 26. Marciano BE, Spalding C, Fitzgerald A, et al. Common Severe Infections in Chronic Granulomatous Disease. Clin Infect Dis 2015;60(8):1176–83. 27. Slack MA, Thomsen IP. Prevention of Infectious Complications in Patients With Chronic Granulomatous Disease. J Pediatric Infect Dis Soc 2018;7(suppl1):S25-S30. 28. Ezekowitz RA, Orkin SH, Newburger PE. Recombinant interferon gamma augments phagocyte superoxide production and X-chronic granulomatous disease gene expression in Xlinked variant chronic granulomatous disease. J Clin Invest 1987;80(4):1009–16. 29. International Chronic Granulomatous Disease Cooperative Study Group. A Controlled Trial of Interferon Gamma to Prevent Infection in Chronic Granulomatous Disease. N Engl J Med 1991;324(8):509–16. 30. Marciano BE, Wesley R, De Carlo ES, et al. Long-Term Interferon-Therapy for Patients with Chronic Granulomatous Disease. Clin Infect Dis 2004;39(5):692–9. 31. Jackson SH, Miller GF, Segal BH, et al. IFN- $γ$ Is Effective in Reducing Infections in theMouse Model of Chronic Granulomatous Disease (CGD). J Interf &Cytokine Res 2001;21(8):567–73. 32. Naderi beni F, Fattahi F, Mirshafiey A, et al. Increased production of nitric oxide by neutrophils from patients with chronic granulomatous disease on interferon-gamma treatment. Int Immunopharmacol 2012;12(4):689–93. 33. Bustamante J, Boisson-Dupuis S, Abel L, Casanova J-L. Mendelian susceptibility to mycobacterial disease: Genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin Immunol 2014;26(6):454–70. 34. Rosain J, Kong X, Martinez‐Barricarte R, et al. Mendelian susceptibility to mycobacterial disease: 2014–2018 update. Immunol & Cell Biol 2019;97(4):360–7. 35. Kotenko S V., Izotova LS, Pollack BP, et al. Interaction between the Components of the Interferon γ Receptor Complex. J Biol Chem 1995;270(36):20915–21.36. Jouanguy E, Lamhamedi-Cherradi S, Altare F, et al. Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette-Guérin infection and a sibling with clinical tuberculosis. J Clin Invest 1997;100(11):2658–64. 37. Remiszewski P, Roszkowska-Śliz B, Winek J, et al. Disseminated Mycobacterium avium Infection in a 20-Year-Old Female with Partial Recessive IFNγR1 Deficiency. Respiration 2006;73(3):375–8. 38. Ward CM, Jyonouchi H, Kotenko S V, et al. Adjunctive treatment of disseminated Mycobacterium avium complex infection with interferon alpha-2b in a patient with complete interferon-gamma receptor R1 deficiency. Eur J Pediatr 2007;166(9):981–5. 39. Liu S-Y, Sanchez DJ, Aliyari R, Lu S, Cheng G. Systematic identification of type I and type II interferon-induced antiviral factors. Proc Natl Acad Sci 2012;109(11):4239–44. 40. Bax HI, Freeman AF, Ding L, et al. Interferon Alpha Treatment of Patients with Impaired Interferon Gamma Signaling. J Clin Immunol 2013;33(5):991–1001. 41. Bouchonnet F, Boechat N, Bonay M, Hance AJ. Alpha/beta interferon impairs the ability of human macrophages to control growth of Mycobacterium bovis BCG. Infect Immun 2002;70(6):3020–5. 42. Nguyen KB, Cousens LP, Doughty LA, Pien GC, Durbin JE, Biron CA. Interferon α/βmediated inhibition and promotion of interferon γ: STAT1 resolves a paradox. Nat Immunol 2000;1(1):70–6. 43. de Wetering D van, van Wengen A, Savage NDL, van de Vosse E, van Dissel JT. IFN-α cannot substitute lack of IFN-γ responsiveness in cells of an IFN-γR1 deficient patient. Clin Immunol 2011;138(3):282–90. 44. Alangari AA, Al-Zamil F, Al-Mazrou A, et al. Treatment of disseminated mycobacterial infection with high-dose IFN-γ in a patient with IL-12Rβ1 deficiency. Clin Dev Immunol 2011;2011:691956. 45. Prando C, Samarina A, Bustamante J, et al. Inherited IL-12p40 Deficiency. Medicine (Baltimore) 2013;92(2):109–22. 46. Villarino A V., Kanno Y, O’Shea JJ. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat. Immunol. 2017;18(4):374–84. 47. Reich NC. STAT dynamics. Cytokine & growth factor Rev 2007;18(5–6):511–8. 48. Najjar I, Fagard R. STAT1 and pathogens, not a friendly relationship. Biochimie 2010;92(5):425–44. 49. Liu L, Okada S, Kong X-F, et al. Gain-offunction human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med 2011;208(8):1635–48. 50. Toubiana J, Okada S, Hiller J, et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood 2016;127(25):3154–64. 51. Depner M, Fuchs S, Raabe J, et al. The Extended Clinical Phenotype of 26 Patients withChronic Mucocutaneous Candidiasis due to Gainof Function Mutations in STAT1. J Clin Immunol 2016;36(1):73–84. 52. Uzel G, Sampaio EP, Lawrence MG, et al. Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation– polyendocrinopathy–enteropathy–X-linked–like syndrome. J Allergy Clin Immunol 2013;131(6):1611--1623.e3. 53. Baris S, Alroqi F, Kiykim A, et al. Severe Early-Onset Combined Immunodeficiency due to Heterozygous Gain-of-Function Mutations in STAT1. J Clin Immunol 2016;36(7):641–8. 54. Tabellini G, Vairo D, Scomodon O, et al. Impaired natural killer cell functions in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations. J Allergy Clin Immunol 2017;140(2):553--564.e4. 55. Forbes LR, Vogel TP, Cooper MA, et al. Jakinibs for the treatment of immune dysregulation in patients with gain-of-function signal transducer and activator of transcription 1 (STAT1) or STAT3 mutations. J Allergy Clin Immunol 2018;142(5):1665–9. 56. Meesilpavikkai K, Dik WA, Schrijver B, et al. Baricitinib treatment in a patient with a gain-offunction mutation in signal transducer and activator of transcription 1 (STAT1). J Allergy Clin Immunol 2018;142(1):328--330.e2. 57. Vargas-Hernández A, Mace EM, Zimmerman O, et al. Ruxolitinib partially reverses functional natural killer cell deficiency in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations. J Allergy Clin Immunol 2018;141(6):2142--2155.e5. 58. Weinacht KG, Charbonnier L-M, Alroqi F, et al. Ruxolitinib reverses dysregulated T helper cell responses and controls autoimmunity caused by a novel signal transducer and activator of transcription 1 (STAT1) gain-of-function mutation. J Allergy Clin Immunol 2017;139(5):1629-1640.e2. 59. Harris TJ, Grosso JF, Yen H-R, et al. Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J Immunol 2007;179(7):4313–7. 60. Chandrasekaran P, Zimmerman O, Paulson M, et al. Distinct mutations at the same positions of STAT3 cause either loss or gain of function. J Allergy Clin Immunol 2016;138(4):1222-- 1224.e2. 61. Milner JD, Vogel TP, Forbes L, et al. Earlyonset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood 2015;125(4):591–9. 62. Palmer DC, Restifo NP. Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function. Trends Immunol 2009;30(12):592–602. 63. Flanagan SE, Haapaniemi E, Russell MA, et al. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat Genet 2014;46(8):812–4. 64. Haddad E. STAT3: too much may be worse than not enough! 2015; 65. Haapaniemi EM, Kaustio M, Rajala HLM, et al. Autoimmunity, hypogammaglobulinemia,lymphoproliferation, and mycobacterial disease in patients with activating mutations in STAT3. Blood 2015;125(4):639–48. 66. Vogel TP, Milner JD, Cooper MA. The Ying and Yang of STAT3 in Human Disease. J Clin Immunol 2015;35(7):615–23. 67. Lucas CL, Chandra A, Nejentsev S, Condliffe AM, Okkenhaug K. PI3Kδ and primary immunodeficiencies. Nat Publ Gr 2016;16(11):702–14. 68. Angulo I, Vadas O, Garçon F, et al. Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage. Science 2013;342(6160):866–71. 69. Deau M-C, Heurtier L, Frange P, et al. A human immunodeficiency caused by mutations in the PIK3R1 gene. J Clin Invest 2014;124(9):3923–8. 70. Elgizouli M, Lowe DM, Speckmann C, et al. Activating PI3Kδ mutations in a cohort of 669 patients with primary immunodeficiency. Clin Exp Immunol 2016;183(2):221–9. 71. Lucas CL, Kuehn HS, Zhao F, et al. Dominantactivating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat Immunol 2014;15(1):88– 97. 72.Maccari ME, Abolhassani H, Aghamohammadi A, et al. Disease Evolution and Response to Rapamycin in Activated Phosphoinositide 3-Kinase δ Syndrome: The European Society for ImmunodeficienciesActivated Phosphoinositide 3-Kinase δ Syndrome Registry. Front Immunol 2018;9:543. 73. Rao VK, Webster S, Dalm VASH, et al. Effective activated PI3Kδ syndrome-targeted therapy with the PI3Kδ inhibitor leniolisib. Blood 2017;130(21):2307–16. 74. Wetzler M, Talpaz M, Kleinerman ES, et al. A new familial immunodeficiency disorder characterized by severe neutropenia, a defective marrow release mechanism, and hypogammaglobulinemia. Am J Med 1990;89(5):663–72. 75. Lapidot T, Kollet O. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia 2002;16(10):1992–2003. 76. Suratt BT, Petty JM, Young SK, et al. Role of the CXCR4/SDF-1 chemokine axis in circulating neutrophil homeostasis. Blood 2004;104(2):565– 71. 77. Hernandez PA, Gorlin RJ, Lukens JN, et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 2003;34(1):70–4. 78. Kawai T, Choi U, Whiting-Theobald NL, et al. Enhanced function with decreased internalization of carboxy-terminus truncated CXCR4 responsible for WHIM syndrome. Exp Hematol 2005;33(4):460–8. 79. Gulino A.V, Moratto D, Sozzani S, et al.Altered leukocyte response to CXCL12 in patients with warts hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome. Blood 2004;104(2):444–52. 80. Dugan MJ, Maziarz RT, Bensinger WI, et al. Safety and preliminary efficacy of plerixafor (Mozobil) in combination with chemotherapy and G-CSF: an open-label, multicenter, exploratory trial in patients with multiple myeloma and nonHodgkin’s lymphoma undergoing stem cell mobilization. Bone Marrow Transplant 2010;45(1):39–47. 81. McDermott DH, Lopez J, Deng F, et al. AMD3100 is a potent antagonist at CXCR4(R334X) , a hyperfunctional mutant chemokine receptor and cause of WHIM syndrome. J Cell Mol Med 2011;15(10):2071–81. 82. McDermott DH, Liu Q, Ulrick J, et al. The CXCR4 antagonist plerixafor corrects panleukopenia in patients with WHIM syndrome. Blood 2011;118(18):4957–62. 83. McDermott DH, Pastrana D V, Calvo KR, et al. Plerixafor for the Treatment of WHIM Syndrome. N Engl J Med 2019;380(2):163–70. 84. Zhou Q, Yang D, Ombrello AK, et al. Earlyonset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med 2014;370(10):911–20. 85. Meyts I, Aksentijevich I. Deficiency of adenosine deaminase 2 (DADA2): Updates on the phenotype, genetics, pathogenesis, and treatment. J Clin Immunol 2018;38(5):569–78. 86. Zavialov A.V., Engström Å. Human ADA2 belongs to a new family of growth factors with adenosine deaminase activity. Biochem J 2005;391(1):51–7. 87. Caorsi R, Penco F, Grossi A, et al. ADA2 deficiency (DADA2) as an unrecognised cause of early onset polyarteritis nodosa and stroke: A multicentre national study. Ann Rheum Dis 2017;76(10):1648–56. 88. Ombrello AK, Bethesda, Qin J, et al. Treatment strategies for deficiency of adenosine deaminase 2. N. Engl. J. Med. 2019;380(16):1582–4. 89. Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 2001;29(3):301–5. 90. Manthiram K, Zhou Q, Aksentijevich I, Kastner DL. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nat. Immunol. 2017;18(8):832–42. 91. Aksentijevich I, Putnam CD, Remmers EF, et al. The clinical continuum of cryopyrinopathies: Novel CIAS1 mutations in North American patients and a new cryopyrin model. Arthritis Rheum 2007;56(4):1273–85. 92. Mortimer L, Moreau F, MacDonald JA, Chadee K. NLRP3 inflammasome inhibition is disrupted in a group of auto-inflammatory disease CAPS mutations. Nat Immunol 2016;17(10):1176–86. 93. Jesus AA, Goldbach-Mansky R. IL-1 Blockade in Autoinflammatory Syndromes. Annu Rev Med 2014;65(1):223–44. 94. Hoffman HM, Throne ML, Amar NJ, et alEfficacy and safety of rilonacept (Interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: Results from two sequential placebo-controlled studies. Arthritis Rheum 2008;58(8):2443–52. 95. Lachmann HJ, Kone-Paut I, KuemmerleDeschner JB, et al. Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med 2009;360(23):2416–25. 96. Goldbach-Mansky R, Dailey NJ, Canna SW, et al. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1β inhibition. N Engl J Med 2006;355(6):581–92. 97. Harris ES, Weyrich AS, Zimmerman GA. Lessons from rare maladies: Leukocyte adhesion deficiency syndromes. Curr Opin Hematol 2013;20(1):16–25. 98. Zenobia C, Hajishengallis G. Basic biology and role of interleukin-17 in immunity and inflammation. Periodontol 2000 2015;69(1):142– 59. 99. Moutsopoulos NM, Zerbe CS, Wild T, et al. Interleukin-12 and interleukin-23 blockade in leukocyte adhesion deficiency type 1. N Engl J Med 2017;376(12):1141–6.